Identifying errors in dust models from data assimilation
نویسندگان
چکیده
Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.
منابع مشابه
همجوشی دادههای موج در خلیج فارس با مدل طیفی ویوواچ3
The major problems in modeling of different oceanographic and meteorological parameters are limitations in numerical methods and human incomplete knowledge in physical processes involved. As a result, significant differences between the results of these models and in situ observations of these parameters might exist. One of the powerful solutions for decreasing the forecast errors in the models...
متن کاملAccounting for Pliem-Xiu and NOAH Module to Simulate Dust: A Case of Western Areas of Ahwaz
Extended abstract 1- INTRODUCTION In the arid and semi-arid areas of Asia, dust storms occur frequently. Much progress has been made in the monitoring modeling and prediction of Asian dust storms. Dust emission is caused by wind erosion in the sensitive areas. Wind erosion is described as the transportation of soil particles by means of the wind. Soil Surface moisture is one of the most i...
متن کاملAssimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobraking period
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mo...
متن کاملRadiative Forcing of Saharan Dust: GOCART Model Simulations Compared with ERBE Data
This study uses information on Saharan aerosol from a dust transport model to calculate radiative forcing values. The transport model is driven by assimilated meteorological fields from the Goddard Earth Observing System Data Assimilation System. The model produces global three-dimensional dust spatial information for four different mineral aerosol sizes. These dust fields are input to an offli...
متن کاملResponse of the climatic temperature to dust forcing, inferred from total ozone mapping ž / spectrometer TOMS aerosol index and the NASA assimilation model
Ž Recently, Alpert et al. Alpert, P., Shay-El, Y., Kaufman, Y.J., Tanre, D., DaSilva, A., Schubert, S., Joseph, J.H., 1998. Quantification of dust-forced heating of the lower troposphere, Ž . Ž . . Nature 395 6700 , 367–370, 24 September . suggested an indirect measure of the tropospheric temperature response to dust aerosols by using model updates — roughly speaking model errors Ž . — of the N...
متن کامل